Autumn leaf color is a phenomenon that affects the normally green leaves of many deciduous and by which they take on, during a few weeks in the autumn season, various shades of yellow, orange, red, purple, and brown. The phenomenon is commonly called autumn colours or autumn foliage in British English and fall colors, fall foliage, or simply foliage in American English.
In some areas of Canada and the United States, "leaf peeping" tourism is a major contribution to economic activity. This tourist activity occurs between the beginning of color changes and the onset of leaf fall, usually around September to November in the Northern Hemisphere and March to May in the Southern Hemisphere.
Chlorophyll has a vital function: it captures solar rays and uses the resulting energy in the manufacture of the plant's food — simple sugars which are produced from water and carbon dioxide. These sugars are the basis of the plant's nourishment — the sole source of the needed for growth and development. In their food-manufacturing process, the chlorophylls break down, thus are continually "used up". During the growing season, however, the plant replenishes the chlorophyll so that the supply remains high and the leaves stay green.
In late summer, with daylight hours shortening and temperatures cooling, the that carry fluids into and out of the leaf are gradually closed off as a layer of special cork cells forms at the base of each leaf. As this cork layer develops, water and mineral intake into the leaf is reduced, slowly at first, and then more rapidly. During this time, the amount of chlorophyll in the leaf begins to decrease. Often, the veins are still green after the tissues between them have almost completely changed color.
Chlorophyll is located in the thylakoid membrane of the chloroplast and it is composed of an apoprotein along with several , the most important of which are chlorophylls a and b. In the autumn, this complex is broken down. Chlorophyll degradation is thought to occur first. Research suggests that the beginning of chlorophyll degradation is catalyzed by chlorophyll b reductase, which reduces chlorophyll b to 7‑hydroxymethyl chlorophyll a, which is then reduced to chlorophyll a. This is believed to destabilize the complex, at which point breakdown of the apoprotein occurs. An important enzyme in the breakdown of the apoprotein is FtsH6, which belongs to the FtsH family of .
Chlorophylls degrade into colorless known as nonfluorescent chlorophyll catabolites. As the chlorophylls degrade, the hidden pigments of yellow and orange beta-carotene are revealed.
The carotenoids occur, along with the chlorophyll pigments, in tiny structures called , within the cells of leaves. Sometimes, they are in such abundance in the leaf that they give a plant a yellow-green color, even during the summer. Usually, however, they become prominent for the first time in autumn, when the leaves begin to lose their chlorophyll.
Carotenoids are common in many living things, giving characteristic color to , maize, Domestic Canary, and , as well as , , , and .
Their brilliant yellows and oranges tint the leaves of such hardwood species as hickory, ash, maple, yellow poplar, aspen, birch, black cherry, sycamore, cottonwood, sassafras, and alder. Carotenoids are the dominant pigment in coloration of about 15–30% of tree species.
Autumn leaf color is a phenomenon that affects the normally green leaves of many deciduous trees and shrubs by which they take on, during a few weeks in the autumn season, various shades of yellow, orange, red, purple, and brown.
Anthocyanins temporarily color the edges of some of the very young leaves as they unfold from the in early spring. They also give the familiar color to such common fruits as cranberry, Red Delicious, blueberry, cherry, strawberry, and plums.
Anthocyanins are present in about 10% of tree species in temperate regions, although in certain — most famously northern New England — up to 70% of tree species may produce the pigment. In autumn forests, they appear vivid in the , , sourwood, Liquidambar, , tupelos, cherry, and . These same pigments often combine with the carotenoids' colors to create the deeper orange, fiery reds, and bronzes typical of many hardwood species.
Anthocyanins, responsible for red-purple coloration, are actively produced in autumn, but not involved in leaf-drop. A number of hypotheses on the role of pigment production in leaf-drop have been proposed, and generally fall into two categories: interaction with animals, and protection from nonbiological factors.
Consistently with red-leaved trees providing reduced survival for , tree species with bright leaves tend to select for more specialist aphid pests than do trees lacking bright leaves (autumn colors are useful only in those species coevolving with insect pests in autumn). One study found that simulating insect herbivory (leaf-eating damage) on maple trees showed earlier red coloration than trees that were not damaged.
The coevolution theory of autumn colors was proposed by W. D. Hamilton in 2001 as an example of evolutionary signalling theory. With biological signals such as red leaves, it is argued that because they are costly to produce, they are usually honest vouchers for the true quality of the signaler, whereas "low-quality" individuals are unable to fake them and cheat. Autumn colors would be a signal if they were costly to produce, or be impossible to fake (for example if autumn pigments were produced by the same biochemical pathway that produces the chemical defenses against the insects).
The changing leaf colors prior to the fall have also been suggested as adaptations that may help to undermine the camouflage of herbivores.
Many plants with berries attract birds with especially visible berry and/or leaf color, particularly bright red. The birds get a meal, while the shrub, vine, or typically small tree gets undigested seeds carried off and deposited with the birds' manure. Poison ivy is particularly notable for having bright-red foliage drawing birds to its off-white seeds (which are edible for birds, but not most mammals).
In the southern hemisphere, colorful autumn foliage can be observed in southern and central Argentina, the South Brazil and Southeast Brazil regions of Brazil, eastern and southeastern Australia (including South Australia and Tasmania) and most of New Zealand, particularly the South Island.
Global warming and rising carbon dioxide levels in the atmosphere may delay the usual autumn spectacle of changing colors and falling leaves in northern hardwood forests in the future, and increase forest productivity. Specifically, higher autumn temperatures in the Northeastern United States is delaying the color change. Experiments with Populus trees showed that they stayed greener longer with higher CO2 levels, independent of temperature changes. However, the experiments over two years were too brief to indicate how mature forests may be affected over time. Other studies using 150 years of herbarium specimens found more than a one-month delay in the onset of autumn since the 19th century, and found that insect, virus, and drought stress can also affect the timing of fall coloration in maple trees. Also, other factors, such as increasing ozone levels close to the ground (tropospheric ozone pollution), can negate the beneficial effects of elevated carbon dioxide.
Anthocyanins
Function of autumn colors
Photoprotection
Coevolution
Allelopathy
Tourism
Climate influences
Notes
Further reading
External links
|
|